Persistence of Traveling Wave Solutions in a Bio-reactor Model with Strong Generic Delay Kernels and Nonlocal Effect
نویسندگان
چکیده
In this article, we consider the persistence of nontrivial traveling wave solutions of a bio-reactor system with strong generic delay kernels and nonlocal effect, which models the microbial growth in a flow reactor. By using the geometric singular perturbation theory and the center manifold theorem, we show that traveling wave solutions exist provided that the delays are sufficiently small with the strong generic delay kernels.
منابع مشابه
Traveling Wave Solutions of Nonlocal Delay Reaction-diffusion Equations without Local Quasimonotonicity
This article concerns the traveling wave solutions of nonlocal delay reaction-diffusion equations without local quasimonotonicity. The existence of traveling wave solutions is obtained by constructing upper-lower solutions and passing to a limit function. The nonexistence of traveling wave solutions is also established by the theory of asymptotic spreading. The results are applied to a food lim...
متن کاملTraveling Waves of a Mutualistic Model of Mistletoes and Birds
The existences of an asymptotic spreading speed and traveling wave solutions for a diffusive model which describes the interaction of mistletoe and bird populations with nonlocal diffusion and delay effect are proved by using monotone semiflow theory. The effects of different dispersal kernels on the asymptotic spreading speeds are investigated through concrete examples and simulations.
متن کاملPeriodic Traveling Waves in Integrodifferential Equations for Nonlocal Dispersal
Periodic traveling waves (wavetrains) have been extensively studied for reaction-diffusion equations. One important motivation for this work has been the identification of periodic traveling wave patterns in spatiotemporal data sets in ecology. However, for many ecological populations, diffusion is no more than a rough phenomenological representation of dispersal, and spatial convolution with a...
متن کاملTraveling waves of two-component reaction-diffusion systems arising from higher order autocatalytic models
We study the existence and uniqueness of traveling wave solutions for a class of twocomponent reaction diffusion systems with one species being immobile. Such a system has a variety of applications in epidemiology, bio-reactor model, and isothermal autocatalytic chemical reaction systems. Our result not only generalizes earlier results of Ai and Huang (Proceedings of the Royal Society of Edinbu...
متن کاملExistence, Asymptotics and Uniqueness of Traveling Waves for Nonlocal Diffusion Systems with Delayed Nonlocal Response
Abstract. In this paper, we deal with the existence, asymptotic behavior and uniqueness of travelingwaves for nonlocal diffusion systems with delay and global response. We first obtain the existence of traveling wave front by using upperlower solutions method and Schauder’s fixed point theorem for c > c∗ and using a limiting argument for c = c∗. Secondly, we find a priori asymptotic behavior of...
متن کامل